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The main goal of this paper is to present a numerical model describing the major physical 
phenomena involved in electromagnetic casting industrial processes as precisely as possible. 
Under suitable physical assumptions, we derive the set of equations in the two-dimensional 
case; we describe in detail the numerical methods used to solve such equations and derive an 
iterative algorithm. Numerical results describing the case of an aluminium ingot are presented 
in order to show the efliciency of the method. lc’ 1991 Academic Press. Inc. 

1. INTR~OUCTI~N 

Electromagnetic casting (EMC) can be schematically described as the making of 
metal ingots using an industrial set-up where the liquid metal is confined in an 
electromagnetic field (cf. Fig. 1). This field is induced by an alternating current 
which flows in the inductor. Solidification is obtained by means of a water jet on 
the ingot. In most applications, control of the resulting Lorentz forces on the liquid 
is obtained with a screen. The main advantage of such technology-in contrast with 
classical casting technologies--is that the faces of the resulting ingot are smoother. 
A more detailed description of EMC can be found in Refs [ 1, 21 and the references 
therein. 

The diversity of the physical phenomena observed in EMC make experimental 
investigations rather heavy and expensive. Therefore, numerical modelling seems to 
be an efficient alternative to experimentation. 

Our purpose, in this paper, is to present a “complete” mathematical model of the 
two-dimensional problem and to describe the numerical techniques used to solve 
such equations. Let us point out, furthermore, that even if the model is applied to 
EMC, the mathematical problem-and the numerical code-handles more general 
situations, where magnetohydrodynamics (MHD) play a fundamental role. In 
particular, even though the hydrodynamic contribution in the Ohm law can be 
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FIG. 1. Schematic representation of the EMC device. 

neglected in EMC, the mathematical model and the numerical code take it. into 
account and may therefore be applied to other problems (e.g., electromagnetic 
stirring j. 

Numerical modelling of such a problem has already been considered by several 
authors (cf. [ 141 and the references therein). But, to our knowledge, the new con- 
tribution of our work consists in considering the coupling of electromagnetics with 
hydrodynamics for EMC using boundary integral methods for solving the external 
electromagnetic problem. Moreover, a common simplification in the literature for 
this type of models consists in neglecting the surface tension effects in the meniscus. 
Numerical investigation (cf. Section 6) shows that this effect cannot reasonably be 
neglected. 

The outline of the paper is as follows: In Section 2, we derive the mathematical 
model using MHD equations and briefly describe an iterative procedure whi.ch 
uncouples the involved problems. In Section 3, the electromagnetic problem is 
considered. Under some simplifying assumptions, we derive the two-dimensional 
Helmholtz equation including the convection effect. The approximation of such a 
problem is performed using a coupled finite element/boundary element method. T 
hydrodynamic problem is solved in Section 4: the incompressible Navier-Stokes 
equations are discretized by a classical penalty finite element method. In Section 5> 
the free boundary problem is investigated and an iteration procedure is set up, 
Finally, numerical results are given for a cylinder and compared with analytical 
solutions; the case of electromagnetic casting of aluminium is then simulated. 



484 BESSON ET AL. 

2. THE MATHEMATIC4L MODEL 

From a physical point of view, EMC involves three main types of phenomena. 

(1) An electromagnetic effect created by the inductor. Such a contribution is 
responsible for the Lorentz force which is assumed to confine the liquid metal. This 
phenomenon is governed by the Maxwell’s equations in the whole space. 

(2) Hydrodynamic effects caused by the presence of the Lorentz force. 
Natural convection resulting from temperature gradient also contributes to the fluid 
flow. Here, the incompressible Navier-Stokes equations govern the melt flow in the 
liquid region. 

(3) Thermal effects due to the solidification of the liquid metal and to forced 
convection. The two-phase Stefan equation is usually considered to model these 
effects; but as we shall see later, these effects are neglected for our purpose. 

Further remarks can be made: 

(4) Since the meniscus shape (i.e., the interface between the liquid metal and 
the air) is unknown, a free boundary problem which consists in balancing the 
involved external forces is therefore to be considered. 

(5) Some of the equations considered above are valid only in a subdomain, 
e.g., the Navier-Stokes equations which are defined in the liquid region. 

In order to solve such a coupled problem, some necessary simplifications of the 
model are introduced. First, since we deal with sufficiently long ingots-in the 
x,-direction-we shall adopt a two-dimensional model. More precisely, we assume 
that all the involved fields are x,-independent, i.e., translation invariant along the 
x,-axis (see Fig. 2 for the example of Aluminium EMC). Furthermore, we shall 
neglect natural convection effects. Indeed, the present model assumes that the 
liquidus (i.e., the liquid-solid interface) shape has no effect on the meniscus shape. 
This assumption has already been made by other authors (cf. [ 1, 21). This implies 
that the heat transfer equation is dropped. More physical assumptions are made on 
the model and will be introduced when needed. 

For such a coupled problem (phenomena (l), (2)), an iterative technique seems 
to be the natural way to split the problem into %impler” easy to solve problems. 
The convergence of the algorithm is checked with respect to the meniscus shape. 

In Section 5, we present the flow chart of the iterative procedure in detail; its 
outline is the following: 

1. Give an initial meniscus shape. 
2. Solve Maxwell’s equations and compute Lorentz forces. 
3. Solve Navier-Stokes equations and compute normal tractions on the 

meniscus. 
4. Update the meniscus shape using the Laplace-Young equation. 
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FIG. 2. The “computational” domain. 

5. If the meniscus shape is “sufficiently close” to the previous one, then stop; 
otherwise, go to 2. 

In other words, this algorithm consists in uncoupling three types of problems. 
The next three sections are devoted to the separate investigation of these problems. 

3. THE ELECTROMAGNETIC PROBLEM 

In this section we are interested in the derivation of the elmholtz equation 
which is satisfied by the electromagnetic potential under suitable assumptions A 
numerical method to approximate such problem is designed. The method appears 
as a coupling of finite element and boundary element formulations. 

3.1. Deritlation of the Helndzoltz Equation 

Consider a set of n infinite cylindrical conductors A:, A2, . . . . A, of w 
intersections with the plane 0x,x, are denoted by Q,, Q,, ~‘,, 52, and the generating 
lines are parallel to the x,-axis. The domains Qj, j= 1, ~.., n are assumed to be 
bounded, connected, and disjoined and their boundaries are denoted respectively by 
f, , r2, . . . . I-,,. We set 

A= (j Aj, QqJpi, ‘! r= u r,. 
j=l j= I j=! 
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Let us now assume that these conductors are travelled by an alternating current 
parallel to the x,-axis with a moderate frequencyj The system of the II conductors, 
the permeability of which is supposed to be p,,, and the vacuum is then governed 
by the classical Maxwell’s equations (cf. [S], for instance) in the whole space R3: 

(3.la) 

(3.lb) 

so div E = y, (3.k) 

‘div B=O. (3.ld) 

We add the Ohm law to these equations, i.e., 

J=a(E+uxB) in A, (3.2a) 

J=O in R3\J. (3.2b) 

In the above equations, the time variable is denoted by t, the fields 11, J, B, E, and 
u are defined on R3 and denote, respectively, 

7, density of charge; 
J, electric current; 
B, magnetic induction, 
E, electric field; 
u, velocity of the fluid in the liquid region (by convention, we set u = 0 outside 

this region). 

The physical constants are: 

so, dielectric constant of the vacuum; 
pa, magnetic permeability of the vacuum; 
0, electric conductivity. 

We mention at this point that since the electromagnetic problem is uncoupled 
from the others in the present algorithm, the geometry of the conductors and the 
velocity u of the fluid are assumed to be given data. 

The system of Eqs. (3.1)-(3.2) must be understood in the sense of distributions 
over R3. Let us introduce the following assumptions: 

(a) As mentioned already, we are seeking x,-independent solutions so that 
Eqs. (3.1 k(3.2) may be considered in R2 and the involved operators only act on the 
x, and the x2 variables. We shall denote by x = (x1, x2). 
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(bj Since we are dealing with alternating currents. we look for periodic 
electromagnetic fields, i.e., solutions of the form 

E(x. t) = Re(e”‘E(x)j in Q (33) 

B(x, t) = Re(e”“‘B(.x)‘j in Rie’. (3%: 

where i is the imaginary unit, o is the angular frequency (CX = 2rrrIf) and Re(<~j 
denotes the real part of a complex-valued function cp. % e velocity vector n is 
assumed to be stationary. 

(c) We assume that the involved fields are of the form 

wd = (4(x), m4,o) in FX2 , (3.4sj 

u(x j = (Us, U,(X), 0) in n. (1.4b) 

Note that Eqs. (3.la), (3.2aj, (3.4a), (3.4b) imply 

B(x) = (0, 0, E(x)) in Q. (Z.&j 

J(x) = (0, 0, J(xij in Q. (3.43 ) 

(dj We neglect the displacement currents (S /St) in the whole space. This 
approximation is generally used for moderate frequencies but leads to inaccnrate 
electric field E in the vacuum. 

By virtue of hypotheses (a))(d), Eqs. (3.1)-(3.2) become 

-curlB+pOJ=O in IR’, 

ioB+curlE=O in i-2, 

div B = 0 in iw’, 

J=a(E+uxB) in 8, 

J=O PI3 rw”g=2-, 

where the symbols “curl” and “curl”, respectively stand for the scalar curling of a 
two-dimensional vector field and the two-dimensional vector curling of a scalar 
field, i.e., 

Note that Eq. (3.1~) was simply dropped, since its use is to deduce the density of 
charge 1’. Moreover, since E = (0, 0, E) and dE/&, = 0, we get from (3.2~) that ;: = 0 
in the conductors. 

Now from (3.5~) and (3.4a) we deduce the existence of a scalar field a’ R’ -+ C 
called deectromagnetic potential, such that 

B = curl a in W’. (3.6) 
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By (3.5a) and (3.6) we have 

-Aa=pOJ in R*. (3.7) 

(i) ZH the conductors, we use the Ohm law (3.5d) and identities (3.6), (3.7) 
to obtain 

-Aa+p,o(u~Vu-E)=O (3.8) 

on the one hand. On the other hand, Eqs. (3.5b) and (3.6) give 

curl(E+iwa)=O in Q, 

which implies the existence of complex constants Cj such that 

E+ioa=Cj in Q,, j= 1, 2, . . . . n. (3.9) 

Combining (3.8) and (3.9) yields the equation 

--dn+~~au.V~+io~,oa=~~oC~ in Qj, j = 1, 2, . . . . rz. (3.10) 

(ii) In the vacuum or air, Eqs. (3.7) and (3.5e) yield 

Au=0 in R’\,Q. (3.11) 

(iii) On the boundaries of the conductors, continuity conditions across these 
boundaries are derived when interpreting Eqs. (3.5) in the sense of distributions and 
assuming the non-existence of surface currents on the conductors. Namely, from 
(3.5a) and (3.6) we have 

?Ja [ I 5 
=o on Z, (3.12) 

where the brackets [ .] denote the jump of a function on the curves Zj and d/&r 
stands for normal derivation. From (3.5~) and (3.6) we deduce that 

[a] =0 on ZY (3.13) 

(iv) At infinity, the Biot-Savart hypothesis implies that the field B is an 
0(1x1 -‘) when (XI + + CC, the real 1x1 standing for the euclidean norm of the 
vector x. This implies that 

a(x) = woglxl) Ix1 -+ + m. 

By classical potential theory, the last identity combined with (3.11) implies that 

a(x)=dloglx) +e+O(lxl-‘), (XI + + x, (3.14) 

where d and e are two complex constants. Without loss of generality, one can 
choose e = 0 since the magnetic induction B does not depend on e. 
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Following [6, 71, let us define a new unknown, standing for the norma; 
derivative on T, to the problem. Using identities (3.30)-(3.14) the problem consrsts 
inlindinga,:S1~~,a,:IW’\,~;i-r@,~:r-,@suchthat 

-4a,+2~1~Va,+i~a,=6 

da?=0 

a,=a, 

2a, 2a, /z -=-= 
&z 2% 

OR I-, (3.E 5d’) 

a:(x) = dloglxj + 0(1x\ -“) lx/ -+ $‘X’> (Xi§e) 

where c! = ,LL~~;, J = o~~cr, and 6 is the piecewise constant function which is e 
pod, on each Q,:. 

In the following, we are concerned with the approximation of problem (3,4 5). 

3.2. A Variational Fmmlation 

The main idea consists in representing the potential a2 (outside Q) by an integral 
equation and reformulating problem (3.15) in a bounded domain which can be 
discretized by a standard Galerkin method. 

By the classical potential theory (see Nedelec [S]. for instance) Eqs. (3.25b) and 
(3.15e) yield 

where 

G(x, y)=&logix-yl. 

- 
1 “,;(X-y) 

G,(x, y)=;G(x, y)= -- . 271 lx-yi’ ’ Y E r. 
J 

the vector II), denoting the outward unit normal to T at y, 
Eq. (3.16b) by a function p defined on r and integrating over f we obtain 

Let us denote by H ‘(~2) the usual Sobolev space, H 1c’2( r) the space of traces on S 
of functions of H’(Q) and by H.m1”2(lJ the dual space of W”2(F), all these spaces 
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being complex-valued. Let us assume u E H’(a). A variational formulation of 
problem (3.15) consists in seeking (a, 2) E H’(Q) x H-“2(r) such that 

dia, ti) - (4 ICI > = (6, $1 w E ff’iQ), (3.17a) 

~‘(n,Il)+(~cl,a>+(Ha,~)=O vp E H - 1!2(rj, (3.17b) 

where 

d(a,lj)= 1 (Va.V~+cc(u.Vu)~+i~u~)dx, 
‘B 

( .,’ ), inner product of the space L2(sZ), 

( . ,. ), duality between H-“‘(T) and H’:*(r), 

Problem (3.17) appears as a mixedformulation of the original problem. Existence 
and uniqueness of a solution of problem (3.17) can be proved by an analogous 
method to that of [6] provided u is divergence-free. 

Remark. It is clear that if the coefficient p is sufficiently “large”-which is the 
case for high frequency currents and highly conducting media--then a boundary 
layer appears. This phenomenon is called in electromagnetic theory the skin effect. 
Its effect on the truncation error, which appears when approximating the problem, 
can be corrected by refining the mesh near the boundaries. In Ref. [9], asymptotic 
behaviour of the solution in function of ,S’ is derived in the case where u = 0. The 
results, however, are only valid for conductors with smooth boundaries (i.e., 
without angles). Another boundary layer appears if the coefficient CI is “high.” In 
this case, upwind techniques must be used to avoid oscillations in the numerical 
solution. 

3.3. Discretizution and Matrix Formulation 

Let $, be a partitioning of the domain D into convex quadrilaterals the 
diameters of which are not greater than h and let yi denote the induced partitioning 
into segments of the boundary r, assumed here to be polygonal for simplicity. We 
define the finite dimensional spaces, 

V,,= {$EC~(~)I$,&~,~K) V’kE%}, 

Mh= (qEL2(r)Iqls=const VSEY~), 

where Co(a) stands for the space of continuous functions over ~=2 and Q,(K) is the 
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space of isoparametrically bi-affine functions on K. After com~iexi~cat~on of :hese 
spaces, we obtain the obvious inclusions 

The discrete problem consists then in seeking a pair IO,?, A,) E V,+ x M,+ such t 

&(a/,, $I- (A,, ti > = (6, $1 vzc, E v,,: (3.l8Zl.j 

s9(&ir pj+ (p, ah> + (Ha,, pi> =o t/p E Iv,, . (3.m) 

Let us now explicitly define the matrix formulation of problem (3.16 Jo To this end, 
let N and M denote respectively the number of vertices of the mesh .q, and the 
number of element edges lying on the boundary r. In addition, let {tij)Ti i 1 3;~~: ;,‘L i 
denote respectively the Lagrange canonical bases of the spaces VA and M,:. We 
define the matrices and vectors [A], [Cl, [II], [Pj, (63, (al, (A) by 

where xk is the position of the kth vertex and sk stands for an arbitrary point on 
the kth edge on r. Thus, the linear system of equations has the form 

CA1 
- ccl’ + cu 

where the Nx N-block [A] is a standard finite element matrix and has therefore a 
skyhne structure, while the M x M-block [D] is a boundary element, hence a dense 
matrix. The rectangle blocks [C] and - [Cl’ + [P] are sparse in the following 
sense: the entry Ckl is zero if the node k does not he on the boundary I-. Therefore, 
it is advantageous to start the numbering of the nodes far from I: Hence7 we 
developed a renumbering algorithm which splits the numbering of the internal 
nodes from boundary nodes (see also [lo]). Comparison with traditional finite 
element renumbering algorithms was favourable to ours. 
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Let us finally add some remarks on the practical implementation of the method: 

(1) The integrals over the elements of Fh are approximated by means of 
2 x 2-Gauss quadrature. 

(2) The boundary integrals are computed exactl~~. 
(3) The linear system of equations is stored in a skyline form and solved by 

the gaussian elimination method. 

3.4. Symmetries of the Solution and Calculatiorl of the Right-Hand Side 

For the particular case of EMC, it is recommended to take into account the 
symmetry-or the skew symmetry-of the solution with respect to one axis of 
coordinates. This is simply performed by changing the integral representation of the 
solution. In Section 6, numerical tests use this method in order to reduce the system 
dimension. 

It is clear that, since the constants C, in (3.10) are the only data that make it 
possible to prescribe the injected currents, one shall choose them in such a way that 
the computed total current density coincides with the prescribed one. We have 
chosen, therefore, these constants such that: 

1 
cj = 

if Qj is an inductor, 
0 otherwise. 

We start by calculating the current J,, with the previous constants. The discrete 
counterparts of Eqs. (3.9), (3Sd), and (3.6) lead to 

J,=a(Cj-ima,--u.Va,) in Qj. 

The actual current in the conductors is then replaced by 

,:‘i J,, J,, 

” = Jinductor Jh h’ 

where J,, is the given injected effective current in the inductor. Note that the above 
discrete current is not continuous across the element interfaces. 

The above reasoning is not rigorous but is similar to the one used in the three- 
dimensional case where energetic arguments lead to the same choice (cf. [4]). 

4. THE HYDRODYNAMIC PROBLEM 

We now turn to the fluid flow problem. Let Q, denote the liquid region in the 
domain Q and assume that Sz, is connected. The pair (II, p), where u and p denote 
respectively the velocity and the pressure of the fluid, is then a solution to the 
incompressible stationary Navier-Stokes equations (cf. [S]): 
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-2divD(u)+pu.Vu+V:,=f+pg in QL, (4.iaj 

div u = 0 :n Q,, (4.lbj 

tl=O on I-(,. h4lc) 

u.n=O on I-J:: (&.!d) 

s(u, p).t=O on p,. i4.le) 

In the above equations, the boundary fr of Q2, is partitioned into Tjj and 6,. 
where Tu represents the meniscus and To is the interface with the solid (cf. Fig. 3), 
the vector t denoting the unit tangent vector to T.tf. The tensor s is the Cauchy 
stress tensor 

s(u, p) = 2D(u). n - g 

where D is the symmetric deformation tensor 

D(u)=;(Vu+Vui)- 

The positive constants y and p denote respectively the dynamic viscosity and the 
density of the fluid. The vectors f and g denote respectively the Lorentz and the 
gravity forces. Condition (4.ld) is a slip boundary condition on the free boundary 
and condition (4.lej is a natural Neumann condition. 

FIG. 3. Curvilinear system of coordinates for the free boundxy problem. 
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4.1. Calculation of the Body Force 

Again, we assume that the domain Q and the body force f are given. Let us 
express the right-hand side of (4.la) with respect to the computed electromagnetic 
potential a. 

It is clear that, since we seek steady state flows, the Lorentz body force is to be 
time-averaged on a period 27r/o. Then we have by definition (cf. [S]): 

f(x) = g J;z;a Re(e’““J(x j) x Re(eim’B(xj) dt. 

Using identities (3.5) (3.6), (3.9), with Ci= 0 and the previous definition, we obtain 

f=~(“lv~R--uRva,)-~((U’v~R)vaR+(u~va,)va,), (4.2) 

where aR, a, denote respectively the real and the imaginary part of the potential a. 
Let us notice that even though the force f involves the velocity vector II, we still 

assume that this force is known. In view of the iteration process, this means that 
this force will be evaluated by considering the velocity at the previous iteration. 
Now, with respect to the numerical approximation of problem (4.1), it is well 
known that the use of body forces which derive from a potential may induce impor- 
tant numerical errors in classical finite element methods. The cure to the problem 
is to remove the gradient component of these body forces. To this end, let us 
assume that fE (L’(Q,j)‘. This implies there exist two scalar fields cp, $EH’(S~~) 
such that 

f = Vq + curl @. 

The uniqueness of such a decomposition is obtained through the minimization of 
the L”-norm of curl $. One can prove that Vq is given by the projection off on all 
the gradients of H’-functions. Consequently, cp is obtained by solving the boundary 
value problem: Find cp E H ‘(Q&R such that 

1 &o.V@dx=~ f.V@dx ‘d@ E H ‘(L?)/R. (4.3) 
Q, QL 

The above variational formulation means that, in particular, the solution is known 
up to an additive constant. 

In the sequel, we shall denote by h the body force field 

h=f-Vqo, 

so that Eq. (4.la) can be written as 

-2divD(u)+pu.Vu+Vp=h, 
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with 

P=P-Pq-cp3 WhZK = vq. 

4.2. Penalization and Variational Formulation 

In order to take account of the constraint (Albj, we use a penalty method (cf.. 
e.g., [I 11). Moreover, the slip boundary condition is also implemented via a 
penalty formulation. Numerical experiments show rhat such a combination of 
penalty methods works well. More precisely, we formally replace problem (4.1) by 

-2divD(u)+pu.Vu-aV(divu)=h 

jj = - ” $iv \4 
E 

iI=0 

iFI R,, (4.4a 

in KC?,, !4.4bt 

on l-0, (4.4c 

on r:\,, (4.4d 1 
s(u, j.q.t=o, on S,f. (4.k) 

where E > 0 is a “small” parameter. 
Clearly, the slip boundary condition is implemented as a Robin condition. For 

more details on such penalty methods, the reader is referred to [IZ]. 
Let X be the space of functions of (ITI(Q which vanish on I-,,. A variationai 

formulation of problem (4.2) consists in seeking a function 

.L ( 
2D(u): D(v) + (u .Vu) .Y If (div u)(div v)\i rix 

/ 

+kjr YYEX. 14.5 t; 
.M 

(u.n)(v-n)a’s=jQ h.vdx 
L 

The pressure function is computed from (4.4b) and p = i, + pq + ~0; it is known q 
to an additive constant. 

4.3. Discretization 

Using the same mesh & of the domain Sz as in last section, we consider the 
induced mesh of the domain R, which we denote by Si. Of course, in practice, 
the “solid” and the “liquid” domains are meshed separately. The space X is then 
approximated by 

iYh = {v E ( CO(!DL 1)’ 1 VIRE (Ql(K),’ VKE qz,, v = 0 on To)-. 

As usual (cf. [ 1 I]), the penalty term must be under-integrated. We shall nor give 
here the details of the discretized problem since the method is standard. 



496 BESSON ET AL. 

5. THE FREE BOUNDARY PROBLEM 

5.1. Generalities 

As in [13, 141, the free boundary is assumed to satisfy the so-called 
Laplace-Young equation which states that the jump of the normal traction on the 
boundary r,w is proportional to the curvature of r,,. Namely, 

TK=C+CT; on r,w, (5.1) 

where o,;, & denote the normal tractions on I-,,,, calculated on each respective side 
of r, (liquid and air); the positive constant r denotes the surface tension of the 
interface and K the curvature of the arc rM. Developing the right-hand side of (5.1), 
we obtain 

TK+CN+C=O, (5.2) 

where G,,, is the normal traction calculated from the NavierrStokes equations, i.e., 

cN = s(u, j?) . n - cp - pq, 

in which d, cp, and q are determined by choosing a normalization and C is an 
unknown constant. It now remains to choose an appropriate system of coordinates 
in order to formulate Eq. (5.2) as an ordinary differential equation. Typically, this 
depends on the particular problem we are dealing with. In the sequel, we shall 
choose a system of polar coordinates to localize points of rM, the origin of which 
is chosen arbitrarily on the x,-axis. This choice seems to be judicious for the EMC 
problem (see Fig. 3) and can be furthermore used for other examples. More 
precisely, for Fig. 3 we have the parametrization of r,: 

XI = xg + r(e) cos 6, x2 = r( f3) sin 8. eEI= [O, 81, 

where r(0) is the unknown function. For this system of coordinates the curvature 
K is given by 

K(T):oEh+K(I)(o)= ?(e) + 2P(e) -r(e) qe) 
(2(e) + rye)*p* . 

If Y = r(e), 0 E 1, is a given function, then its graph gives rise to a meniscus r, and 
Q, is determined. By solving Navier-Stokes equations we obtain a normal traction 
on r, which is denoted by a,(r: .); at point 8 on r, we shall have the normal 
traction a,(r; 0). With these notations, the equilibrium of rM is given by 

m(r)(O) + nN(r( .); e) + C= 0, ved, (5.3) 

where the constant C and the function r( .) are unknown. Now, since Eq. (5.3) is 
of the second order, it is clear that boundary conditions must be given for 8 =0 
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and 9 = 8. In addition, the presence of the constant C requires an extra boundary 
condition. For the present test problem, we choose 

r’(Q) = 0, r(e) = -&, 
a cos B 

r’(8)= --&-q (see Fig, 3 ), (5.4. ) 
A 

where a is a given height of the meniscus. Other kinds of boundary conditions can 
be supplied for such a problem. In particular, rather than giving the height, cne 
may specify the volume of the liquid region 

5.2. AH Iteratit~e Method for the Resolution of the Free Bomrlaq~ Problem 

We start by taking a meniscus shape ri,*, the parametrization of which is 

r = rO( 6 ), 8 E 1, 

and we assume that Y:, is close to the meniscus Tnr the parametrization of which 
is given by 

r= r,(B) + t(B), 8 E 1. 

Let Ck(l) denote the space of k-times continuously differentiable functions on I. 
If we define the mapping F: r E C’(I)w F(r) E CO(I) by 

F(r) = 5 
).2 + y” _ &’ 

($ + pp2 ’ 

the equilibrium of the meniscus Tw is given by (Ug, i.e., 

A natural approach would consist in using a Newton method for the resohrtion ol 
S(t) = 0. The resulting calculation is however quite complicated because a, (Y; \ is 
a nonlocal function in r and its derivation with respect to r requires the resolution 
of an auxiliary boundary value problem. By avoiding the computation of the 
derivative of 5.&F we derive a cheaper iterative scheme for the resolution of (5.5), in 
the form of the following modified Newton’s method: 

with 

;0= Q; 

DF(rO + tk)(tk+ 1 - tk) = - sti’k,), 

t;, l(Q) = &+ ,(Q) = 4’(S, = 0, 

DF(S)(=T 
235 + 4s’(’ - ,“( -$” _ 3t (3’ + 2s” - ss”)((S + 5’S’) 

(s2 + d2)3 ($ is’2)5.2 
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In order to improve the convergence of this method, we replace (5.6) by the 
iterative scheme 

50=(X (5.7a) 

G(LNb+ I - 5k) = -s(tk), (5.W 

56+,(o)=;,+,(ej=~'ce)=O, (5.7c) 

with 

G(L) = Df’(ro + L) + F(rO + GA 

and 9(r, + tk) is the radial component of the Lorentz force on the meniscus ri, 
described by the function r,(8) = t-,(8 j + c,(e), 8 E I. Let us remark that we obtain 
G(tk) by the calculation of S’(c,) if we neglect the variation of s(u, d) . II + cp with 
respect to the variation of the curve r!h. 

Let us now recapitulate the iterative procedure for the resolution of the MHD 
free boundary problem in the following flow chart: 

1. Give a domain R” (and therefore a meniscus shape TO,); 
2. Set n := 0; 

3. Generate a finite element mesh ri of the whole domain; 
4. Compute the potential ai by (3.18) and the body forces (4.2) in its discrete 

version; 
5. Solve the Poisson equation (Eq. (4.3)) by a &-finite element technique; 
6. Solve the Navier-Stokes equations and compute the normal tractions on 

the meniscus; 
7. Update the meniscus shape r’: I (and therefore Q”+ I) described by (5.7) 

with a standard finite difference technique; 
8. If the meniscus shape is ‘~sufhciently close” to the previous one, then stop; 
9. Otherwise, set n := n + 1 and go to 3. 

Let us notice that: 

(1) Step 3 of the algorithm requires no particular computational effort since 
the remeshing is performed only for the connected component of Q containing a 
liquid region. Furthermore, since the meshing algorithm of a domain is based on 
the subdivision of its boundary, the displacement of this boundary allows an 
automatic generation of a new mesh. 

(2) The solution of the Navier-Stokes equation is performed in the connected 
component of Q containing the liquid region. In the solid part of this component 
we set the velocity to zero, thus saving computer time and memory since boundary 
conditions are prescribed by removing their corresponding equations from the 
linear algebraic system. 
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6. NUMERICAL RESULTS 

We present, in this section, two types of runs we have performed with the 
numerical code. The first, is a simple calculation of an axisymmetric electro- 
magnetic field on a disk. In this case, the analytical solution is known and is used 
to check the validity of the numerical method. The second test concerns a srizenmiic 
representation of an aluminium electromagnetic caster, the goal being to obtain 
“realistic” results concerning the validity of the whoie model. Let us point OLH thai 

the real modelization of an EMC device is difficult to obtain because of industrial 
restriction on such documentation. 

6.1. A Test Problem 

The purpose of this example is to check the electromagnetic field calculation for 
a case where an analytical solution is known. More precisely, let Q denote the disk 

and let u = 0 (i.e., static case). Writing Eqs. (3.10) and (3.11) in polar coordinates 
(r, a), assuming O-invariance of the solution and solving the resulting ordinary 
differential equation, we obtain the solution 

al(r) = BJ,(y) - iCjc0, u*(r) = A log Y, 

where 

FIG. 4. Finite element mesh of the disk 
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FIG. 5. Potential Im(a) in function of r for f= 1000 Hz. 

with the function Jp denoting the pth-order Bessel function and 

y=(--l+i)J@. 

We tested the electromagnetic part of the code (see Section 3) for 

0=0.589x 108R-‘m~~‘, p. = 471 x lo-’ H/m, R = 0.05 rn: 

00 

c= 1. 

Figure 5 shows comparisons between the analytical and the numerical solutions 
for the frequency .f = 1000 Hz. A mesh of 1008 elements was generated. Figure 4 
shows the mesh used for this test. The density of the mesh near the boundary Y = R 
is required here in order to describe the skin effect precisely. 

Figure 6 shows that the rate of convergence for the /,-norm of the solution vector 
is two and seems to be optimal. 

6.2. Alunziniurn EMC 

In this second test, we have designed a rather schematic aluminium EMC device. 
We have sketched on Fig. 7 the various parts of the domain Q. Namely: 

Subdomain Medium Conductivity o[R-‘m ~ ‘1 

QL. Liquid aluminium 4.083 x lo6 
Qs Solid aluminium 9.653 x lo6 
Q2 Inductor (copper) 5.89 x lo7 
Q3 Screen (stainless steel) 1.37 x lo6 
Q4 Cooling device (aluminium) 9.653 x lo6 
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FIG. 6. Rate of convergence of the coupled FEM;BEM cm the disk tes?. 

In order to detect hydrodynamical effects, we have run two types of tests with tw3 
different frequencies and injected effective currents. Namely, 

Case I Jo = 6000 A. f = 2500 Hz. 

Case II J,=8OOOA, S=50 

The other physical data are 

p,=47rx lop7 H/m, q = 2.35 Kg(ms)-‘, p = 2350 Kgjmj, T = 1 N:‘m. 

FIG. 7. EMC: detail of the conduc:ors 
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FIG. 8. Initial mesh for the data: .f= 2500 Hz, J, = 6000 A (( Zase I). 

Coolin:, device 

Cooling device 

FIG. 9. Final mesh for the data:f=2500 Hz, J, = 6000 A (Case I). 
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FIG. 10. Iterated meniscus shapes for the data: f= 2500 Hz, J, = 6000 A (Case I). 
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FIG. 11. Meniscus shapes with and without hydrodynamical coupling (Case II i 

The boundary conditions for the fluid flow are 

u=@ on fi, 

u.n=O on r2uf;, 

s(u, p).t=O on r,vr,. 

The “initial” and the “final” (after iterations) finite element meshes of the whole 
domain are represented respectively in Figs. 8 and 9 for Case I. Figure 10 shows the 
successive meniscus shapes obtained after each iteration for Case I. It turns out that 
the convergence is reached after 13 iterations, the initial guess being relatively far 
from the converged solution. In Fig. 11, we have compared the obtained meniscii 

FIG. 12 Contours of modulus of the induced current J, for Case I. 
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FIG. 13. Contours of modulus of the induced current Jh for Case II. 

for Case II with an without taking account of hydrodynamical effects. Clearly, there 
is a discrepancy of about 3 “A between the two men&ii. 

Moduli of the current field Jh are represented in Figs. 12 and 13 for Cases I and 
II, respectively. Clearly, the skin effect is well reproduced by numerical simulation. 

Figures 14 and 15 show the velocity vectors of the melt flow for both cases, 
respectively. Here also, as expected, the stirring effect is more visible in the case of 
low frequency. 

The effect of the surface tension of such a meniscus is investigated in Fig. 16 for 
Case I. It turns out that it is not realistic to neglect such an effect in the equilibrium 
equation (5.1). Finally, we may notice that: 

FIG. 14. Velocity of the melt flow for Case I. 
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FIG. 15. Velocity of the melt flow for Case II. 

‘I ‘, 
\ 
\ 

FIG. 16. Meniscus shape in function of the surface tension (Case I). 
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(1) In the case of high frequency (Case I), the convection effect is really negli- 
gible with respect to magnetic and curvature effects. This means that the coupling 
between the Maxwell and the Navier-Stokes equations is not necessary-at least 
for the prescribed frequency. This was confirmed by calculation. In fact, the normal 
tractions are actually negligible-if we remove the hydrostatic part of the pressure. 
This means that the major part of the Lorentz force derives from a potential which 
contributes to the stability of the device. This is precisely what one should require 
for such a technology. The case of low frequencies indicates that when stirring is 
important (not only in EMC devices), the uncoupling between hydrodynamics and 
electromagnetics might not always be judicious. 

(2) The iteration algorithm of the free boundary problem seems to be quite 
efficient and cheap. 

We conclude by indicating that for this test (as depicted in Fig. 8) each iteration 
takes about 20 min of CPU time on a Vax 8600 and that convergence is achieved 
after 10 iterations. 

7. CONCLUSIONS 

The numerical solutions of various systems of partial differential equations 
arising in two-dimensional MHD problems have been investigated. Numerical 
methods were derived, which perform well even though they could still be 
optimized, e.g., by an acceleration of the solvers. The comparisons of the different 
parts of the code with other methods give satisfactory results. 

For the particular case of aluminium EMC. no comparison with experimental 
data for 2D geometries-in order to test the validity of the model--could be 
possible since the geometry presented here is only schematic. 
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